
D'lppolito
AAAI-92 April 15, 1992

Modeling Software Systems by Domains

Richard D'Ippollt° and Kenneth Lee 0 6
Software Engineering Institute Fo

Carnegie Mellon University

The SoRware Architectures Engineering (SAE) Domain engineers determine if and how the entities
• "Project at the Software Engineering Institute (SEI) selected to be modeled can be specified within the

has developed engineering modeling techniques that constraints imposed by the sol'ware engineers.
both reduce the complexity of software for domain- Finally, they express the models in the language
specific computer systems and result in systems that natural to their domain, Software engineers are
are easier to build and maintain. These techniques responsible for defining a consistent software
allow maximum freedom for system developers to structure into which the domain expertise will go,
apply their domain expertise to software, and providing translations from the domain-specific

natural languages into executable software.
We have applied these techniques to several types of
applications, including training simulators It is not generally possible to reduce the amount of
operating in real time, engineering simulators domain knowledge required to either develop or
operating in non-real time, and real-time embedded enhance a software-dependent system. To borrow a
computer systems. Our modeling techniques result phrase from Albert Einstein, our system models

in software that mirrors both the complexity of the should be as simple as necessary, but no simpler. If
application and the domain knowledge we can separate the design of the models from the
requirements. We submit that the proper measure of design of the software, we can separate the tasks of
software complexity reflects neither the number of the domain engineer from the tasks of the software
software component units nor the code count, but engineer. This would allow the software engineer to
the locus of and amount of domain knowledge. As a make simplifications in the software packaging and
result of using these techniques, domain knowledge execution structures which would not affect the way
is isolated by fields of engineering expertise and the domain engineer expresses the models. It would
removed from the concern ofthe soRware engineer, also allow the domain engineer the freedom to

In this paper, we will describekinds of domain design model algorithms without requiring

expertise,describe engineering by domains, and specializedsoftware knowledge. In effect,each

providerelevantexamples ofsoftwaredeveloped for engineer isrelievedof the burden of becoming an
simulatorapplicationsusingthe techniques._ expertinotherdomains ofexpertise.

We have found that thisseparationof concerns by
Separation of Concerns by Domain domain expertiseiswhat enablesus to simplifythe

Expertise overalldesignprocessand gain a more enhanceable

We classifycomputer system developersby expertise (maintainable)computer system.

and role using three categories:systems analyst,

domain engineer, and software engineer. Systems Engineering by Domain
analysts are responsible for defining the policy,
strategy, and use of the application to be developed, In our vocabulary, a domain is a specific field of
e.g., the concept of operations, and the training engineering expertise. Engineering expertise is
requirements. Domain engineers are the modelers classified by families of models and related sets of
responsible for determining which real-world practices for applying the models, not by the
entities need to be modeled to satisfy the policy, problems to which the expertise is applied. Common

classifications of engineering domains are: electrical,
strategy, and use defined by the systems analysts, civil, nuclear, mechanical, chemical, and (the as yet

, undefined field of) software engineering. An

applicationarea consistsof relatedproblems that
ThisworkissponsoredbytheU.S.DepartmentofDefense. can be describedusing models from a varietyof

The SAE projectmembers areRichardIYIppolito,Kenneth domains. Examples of application areas are

Lee, Charles P]inta, and Jeffrey Stewart. command and control systems, factory automation

35

AAAI-92

systems_ embedded systems, and simulator
systems_. Thus, a flight simulator application

requires domain expertise in aeronautical
engineering, el_trical engineering, mechanical
engineering, and so on.

Models are reusable, adaptable, engineering assets
because they are patterns expressed in their most

general form and are scalable, usually through
templates. A good example of a templated model is a
dress pattern, where all of the cut-lines are given by
dress size.

We classify models using two major types, which we
call product models and practice models 2. The
product model, when scaled, results in a component
of the delivered product. The dress pattern is an
example of a product model, as is the set of
engineering drawings for an I-beam or a DC motor.
Clearly, the dress pattern is no good without the
practice know-how of fabric and thread selection,
cutting, stitching, hemming, pleating, and all of the
other activities needed to produce the final product.
As a commercial venture, dress-making would
require in addition to the product models the
assembly-line models, materials-handling models,
business and economic models, and so on. All of
these models are what we call the practice models,
because they define the established body of practice
around the product models. Interestingly, the more
mature an engineering discipline, the more the
product and practice models will be public. In a
mature discipline, the business enterprise seeks
value added through system composition (model
application), not model creation or refinement,
which are seen as adjunct activities to be
undertaken only when necessary to complete an
application.

In the construction industry (civil engineering and
architecture), for example, all engineering firms

1. As an example, consider the domain of a rope where
force is transmitted through tension in a flexible
member (try using a rope under compression to push
an object). Mechanical engineers have no problem
applying the same rope design models, i.e., the
domain expertise, to suspension bridges, elevators,
cranes, and fishing rods, yet the application areas will
seem quite unrelated to those not proficient in the
domaim

2. We have deliberately avoided the overloaded term
process, preferring to reserve it for its traditional
engineering reference to a controlled activity within a
plant or machine. We use pract/ce to refer to those
engin_ring activitiesthat support product
development.

D'lppolito
April 15, 1992

have access to the same materials, material costs,
implementation practice (labor), and labor costs. In
these cases, the firms compete on system
composition, where success is meeting the
customer's needs with a timely and economical
design. Electrical engineers do not manufacture
their own wire, integrated circuits, resistors, and
other electrical and mechanical components, but
compete on the basis of using these components
efficiently to satisfy a need. The information on the
components themselves is found in engineering
databooks (usually manufacturer's publications),
and engineering handbooks which are compendia of
the practice knowledge. Both require an experienced
practitioner with an in-depth education to interpret,
however, as one cannot learn and practice an

engineering discipline solely from the handbooks.
With that education, however, the use of the

handbooks will go a long way toward guaranteeing a
successful routine (precedented) design. The use of
the handbooks are not intended to support
innovative design.

SAE has been very successfulin applying models
acrossvarious software applicationareas because

our models have Captured patternsofstructureand

behavior at the domain level. The Object.

Connection.Update (OCED model 3 is a good example
of a building block that allows the domain engineer
to capture the patterns of structure and behavior of
the real-world subsystems being modeled 4.
Originally created for flight simulators, the OCU
was immediately applied to the design of the seeker
subsystem ofan anti-tankmissileand isnow being

used in the design of subsystems for engineering

simulators.What made these applicationsof the

model possible was the capturing of the basic
pattern of subsystem operation into a few

standardizedarchitecturalelements5 (models),each

responsible for a particular subsystem task.

Complexity is reduced because any subsystem can

(and must) be expressed using only these basic

elements,thus constrainingthe choiceof solution

structures available for consideration.Systems

analysts,domain engineers,and soRware engineers

3. The eemina] report on the OCU is CMU/SEI-88-TR-30,
An OOD Paradigm for Flight Simulators, 2nd
Ed/t/on. This report, however, is dated relative to
current SAE experience and is being updatecL We are,
also, in the process of writing a series of white papers
that will fully describe the OCU and the engineering
of seRware-dependent systems.

4. In our terms, the total application is composed of
subsystems so that those who wish may apply the
term system to the whole.

36

AAAI-92

are able to make use of the OCU as the basis for

their separation of concerns; the OCU is the
framework that ensures all activities will work

together.

OCU Subsystem Examples

The OCU, produced by the seRware engineers,

guides the systems analysts and domain engineers

by providing the fundamental pattern of analysis
and the structure for model capture. The systems

analysts, with the foreknowledge that the ultimate

sottware implementation will be subsystems

captured by the OCU, will be guided to view the

5. The basic elements are controllers, objects, import

areas, export areas, surrogates, and device handlers.
Controllers are the loci of subsystem connection and

operation information; objects provide the subsystem
services; import areas provide the subsystem with a
view to the external world; export areas provide a
window into the subsystem state for the external
world; surrogates translate information from external
formats to internal formats and back; and device
handlers handle external-world communications. All
instances of each of these elements are of the same

form (implementation structure).

Subsystem Form

D'lppolito
April 15, 1992

ObJoct=

Figure 1: OCU Subsystem Diagram

application as a collection of subsystems. The

domain engineers, with the same foreknowledge,
will be guided to compose models as collections of

subsystems, each composed of objects organized by a

controller. We will show in the following examples,

taken from a simulator application, how the OCU

provides this guidance.

Before we describe how the OCU provides this

guidance, we will provide more detail about the OCU

Controller Template

Subsystem Name:

Description:

Overview of Requirements:

Objects:

Imports:
Name Type Source

Exports:
Name Type Dqm_lnation

Update Algorithm:

package<subsystem name>_Controlleris

-- every subsystemcontrollerhas an update procedure
-- called by the executive
procedureUpdate;

end <subsystem_name>.Controller;

with SEU; - global types
with <subsystem_name>Types; - the 'local' types
with <subsystem_name> Imports;
with<subsystem_name>Exports;

- allobjects that am partof thissubsystem
with<Object_l>_Manager:
with<Object_2>_Manager;
with<Object._3>_Manager;
with<Object 4> Manager:
with<Object 5>_Manager;

packagebody <subsystem name>_ControUeris
-- local variablesdeclaredhere
type <type1>;
type <type2>;

procedureUpdateis
begin

-- controllerupdate algorithmgoes here
end Update;

end <subsystem_name> Controller;

Figure 2: Subsystem Specification Form and Controller Template

37

AAAI-92

itself. We have found that the general patterns of
operation of subsystems in any domain can be
captured in a universal structure. These patterns
involve separation of mission from operation,
localization of state, activation and control of
subsystems, and transfer of information. Separation
of mission from operation is derived from a principle
that is fundamental to all human and machine

behavior: the mechanism of making decisions should
be separate from the mechanisms used to carry out
the decisions. Localization of state is derived from

the fundamental software engineering principle of
information hiding. In the OCU (Figure 1), the
controller is the locus of decision making, and the
objects provide the service mechanisms and the
localization of state.

We knew that we could reduce the software

complexity by repeated use of a small number of
elements, a standard method of information
transfer, and a standard method of control. We also
knew that a maintainable system required closely
related services be isolated from other, unrelated,

services. In software engineering terms, this means
coupling between unrelated entities is minimized,

Sonar Subsystem Form

D'lppolito

April 15, 1992

cohesion between related entities is maximized, and
maintainability is enhanced by repeated use of the
same patterns. In the OCU, isolation and
information transfer is provided by the import and
export areas. Cohesion among the objects in a
subsystem is enforced by having the controller be
the sole entity that implements connections to
objects. We have found this set of elements: objects,
controllers, export areas, and import areas, to be
sufficient for descn_bing any real-world subsystem.

We, as sot_ware engineers, have implemented the
elements of the OCU in Ada. We have captured the
patterns with a subsystem specification form and a
set of element code templates.

The OCt is applied with the aid of the subsystem
specification form and the e]ement code templates,
subsets Of which are shown in Figure 2 (only the
cont÷o]ler temp alate is shown). The subsystem form
provides a standard way for the systems analyst and
domain engineers to record the specifications of
subsystems in terms of the known compositional
elements of subsystems, as shown in Figure 3. The
subsystem templates provide a standard way for the

Sonar Controller Code

Subsystem Name: Sonar

Descrl_lon:
The aonar=_Jbly=tamI=UaNKIto locatemine-like objecm.It=_ansmit power
level,,nd pulserepetilionrate am controlledbytheconsoleoperator.The
receivedsignals are lent to theconsole.

Overview of Reouirements:
Referencel: SWSTO-EO-MMO-020

Sonar Soundheed
Sonar Tilt Potentiometar
Flow ControlServo Valve
RotaryActuator

lmmmu
RataCrnd
Xmit_LweLCmd
Sk=w_Rata_Limit_Cmd
Range_RneLCmd
soraLRaceivecLS_gnal
P_N Repeddon_Rati_Cmd
l._draul_ Pressure Available

SomL,"T'i_PotantiornetacVolt_e
CompositeVideo
Son_ Tranm_ittedS_gnal

pp.3-5
pp.7- _
FO-8
FO-12
TelemebyData Format
MNV-EngineedngWorksheet
Schematic_ide

Ztlal lisamUl
Volts Electronics Unit
Xmit._Level Electronics Unit
Slew_Rate_Limit ElectronicsUnit
Range_l:k_et Electronic=Unit
Sonar S_gnal Environment
_Repe_tJon Rate ElectronicsUnit
Hydmulic_Pmuure HydraulicSystem

]_jBi Ont_Jtcm
Volts ElectronicsUnit
Sonar_V_eo_Signal Electronic=Unit
sonar_S_gnaJ Environment

packageSonar_Conlro_is

- every subsystem controller has an update procedure
- called by the executive
procedure Update;

end Sonar_Controller;

withSEU; - globaltypes
withSonar_Types;-the'local'types
wlthSonar_Imports;
w_hSonar_Expor=;

- aaobjectsthatarepartofthissubsystem
withRow_ControLServoValve_Manager;
withRotary_ActuaC,r_Managw;
wlthSonar_Soundhead_Manager;
with Sonar Tilt Potantlomet_" Managm';

package body SonaLController Is

procedureUpdateis
begin

Fk_w_Con.oLServo_V_e.._g_r. U_ a_
Sor_Llmports,Ra__Command,
Sonar Imports. Hydrau_c_Pmssure_Avallable,
SonaLE xports.Conl]'olk)d_Pressure);

Rotary_Actuator_Manger.Update(
SonaLExports. Conlzolled Pressure,
_E xports.Co_l_olled _Torque);

Figure 3: Completed Subsystem Specification Form and Controller Template (truncated)

38

AAAI-92

soltwareengineer tomap the designofthe models,

captured on the forms, directly into an Ada

implementation of the elements, also shown in

Figure 3.

We can now describe how the OCU provides

guidanceto systems analystsand domain engineers.
The systems analyst, in consultationwith the

customers and users, analyzes the applicationto

identifysubsystems consistentwith the concept of

operation and patterns of use of the application.

Each ofthe subsystems isassigned a specification

form and passed tothe appropriatedomain engineer

for completion.In additionto the identificationof

subsystems, the systems analyst will provide the
domain engineer with a mapping of the training
requirements expressed in terms of model fidelity,
operational modes, and malfunctions.

Figure 4 shows a sonar subsystem schematic from a
Navy remote-controlled, minehunting, undersea
vehicle. This diagram was constructed by sonar
engineers and represents the real-world sonar
subsystem. The schematic captures the knowledge
needed by the domain engineer to model how the

D'lppolito

April 15, 1992

sonar subsystem is constructed. For the construction
of a complete simulator, the systems analyst will
gather representative schematics and provide them,
with the specification forms, to domain engineers.

A domain engineer receives a partia]ly completed
form and some subsystem schematics from the
systems analyst. The domain engineer then models
the real-world subsystem to match the fidelity
requirements expressed on the form. Each element
of the model is mapped to an element of the OCU,
the element models are parameterized to realize the
specified operational modes and malfunctions, and
the parameterized models are captured in a

language natural to the domain engineer. The
domain engineer completes the specification form by
recording the mapping and forwarding the form,

containingthe natural language descriptionof the

parameterizedmodels,tothe soRware engineer.

Figure5 shows a representation of the sonar

subsystem as modeled by the domain engineer.The

objectsremaining are those sufficientto simulate

the subsystem to match the fidelityrequirements,
modes, and malfunctions.Some connectionstoother

(_rotated 9O°

Legemi
I. Segment gear
2. Sonar Boundhead a_embly
3. Sonar mounting drive gear
4.Sonar mounting bracket
S.Roaring
6.Screw
7.Index holes

8. Potentiometer mounting clamp
9. Sonar position indicating potentiometer
10.Set screw

11.Adapter
12. Sonar clamp retaining _rew
13. Shear plate
14. Actuator mounting K.rew
15. Actuator mount

16. Alignment spring pin
17. Rotary actuator

7

(

rotate(

Figure4:Sonar Subsystem Schematic

2

/

39

AAAI-92

D'lppolito

April 15, 1992

uI o0rtorr
B
i
L
I
C
A
L

C
A
B_
L
E

i

Electronics
Subsystem

(p) (E)

--t--- t v'
.._lServo [_.--ur'_l Rotary _SoundheadS°nar _ transmit_

_c_tl,(l Valve I -] Actuator _ _ reci.ve

(+/- Volts) _ I

/ I
I

transmit level position

pulse rep. rate
slew rate limit
range reset

compositevideo

sonar tilt

angle
(+/- volts)

(E) = Energy 1

(Env) = Environment II

(p) = Pressure |

Figure 5: Modeled Sonar Subsystem

Sonar Tilt
Potentiometer

(E)

subsystems on the undersea vehicleare shown as

well. Figure6 shows an OCU diagram for the

modeled sonar subsystem.

Conclusions

Using a fixed set of templates means that the
interfacemechanism between elements is known

ahead of and independent of model design.All

subsystems look (structurally)alike,and each

subsystem can be made to lie within a single

domain, with communication between subsystems
also being handled by common structures.This

means thatthe softwareengineercan proceedwith

executiveand testharness design.It also means

thatthe model specifierscan work independentlyin

theirown domains, knowing thattheirmodels will
fitintothe completedsystem.

Thus, a completed simulator application will consist
of as many instances of the OCU subsystem model
as required by the use and fidelity requirements.
Space limitations prevent us from describing the
additional elements used to compose the simulator
executives, but the same techniques and the OCU
are used there as well.

We conclude that composition by domain-specific
subsystems allows maximum freedom for the

systems analysts,domain engineers,and software

engineerstoapply theirexpertise,and thathaving
common software structuresresults in software

applicationsthat are more easilyunderstood and

enhanced, i.e.,systems which have reduced

complexity.

Soundhesd [PotenUometer I Servo Valve I Actuator

Object [Object [Object L Object

Figure 6: Sonar Subsystem Diagram

40

